Szczegóły publikacji

Opis bibliograficzny

New generation poly($\epsilon$-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering. Pt. 1, Materials properties / Michał DZIADEK, Elżbieta Menaszek, Barbara ZAGRAJCZUK, Justyna PAWLIK, Katarzyna CHOLEWA-KOWALSKA // Materials Science and Engineering. C, Biomimetic Materials, Sensors and Systems ; ISSN 0928-4931. — 2015 — vol. 56, s. 9–21. — Bibliogr. s. 20–21, Abstr.


Autorzy (5)


Słowa kluczowe

biodegradationsurface propertiessolvent cast filmsmechanical propertiesbiocompatibilitypolymer-ceramic compositescrystallinity

Dane bibliometryczne

ID BaDAP89976
Data dodania do BaDAP2015-06-30
Tekst źródłowyURL
DOI10.1016/j.msec.201506.020
Rok publikacji2015
Typ publikacjiartykuł w czasopiśmie
Otwarty dostęptak
Czasopismo/seriaMaterials Science and Engineering, C, Materials for Biological Applications

Abstract

Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21 vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO2-CaO-P2O5 system differing in SiO2 and CaO contents were applied (mol%): S2: 80SiO2, 16CaO, 4P2O5 and A2: 40SiO2, 54CaO, 6P2O5. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37°C for 56 weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (∼67° for 21A2-PCL compared to ∼78° for pure PCL) and also makes AS surface more hydrophobic (∼94° for 21S2-PCL compared to ∼86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38 GPa for pure PCL, 0.90 GPa for 12A2-PCL to 1.31 GPa for 21A2-PCL), which also depends on SBG chemical composition. After 56-week degradation test, considerably higher crystallinity increase (Δχc ∼148% for 21S2-PCL, ∼81% for 21A2-PCL) and weight loss (∼17% for both) were found for composite materials, depending on SBG composition, in contrast to value variations for pure PCL film (Δχc ∼43%, weight loss ∼1.6%). Furthermore, it seems that both SBG could neutralize acidic degradation by-products of PCL at later incubation stages. Obtained SBG-PCL composites show excellent biocompatibility, support cell proliferation also may modulate cell response depending on the glass composition. The results indicate the possibility to use different contents and/or chemical compositions of SBG to obtain composite materials with various, but controlled, surface and mechanical properties as well as degradation kinetics. © 2015 Elsevier B.V. All rights reserved.

Publikacje, które mogą Cię zainteresować

fragment książki
Effect of ceramic filler addition on physicochemical properties of poly($\epsilon$-caprolactone) / M. DZIADEK, B. ZAGRAJCZUK, J. PAWLIK, K. CHOLEWA-KOWALSKA // W: Frontiers in polymer science [Dokument elektroniczny] : the fourth international symposium : 20–22 May 2015, Riva del Garda, Italy. — Wersja do Windows. — Dane tekstowe. — [Italy : s. n.], [2015]. — S. [P1.185]. — Tekst dostępny po zalogowaniu
fragment książki
Poly($\varepsilon$-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: in vitro bioactivity / Michał DZIADEK, Barbara ZAGRAJCZUK, Kinga Dziadek, Maria BORCZUCH-ŁĄCZKA, Katarzyna CHOLEWA-KOWALSKA // W: Innovative technologies in biomedicine : the 2nd international conference : October 12–14, 2015, Krakow, Poland : programme. — [Kraków : s. n.], [2015]. — S. 38–39