Szczegóły publikacji

Opis bibliograficzny

Application of multidimensional scaling to classification of various types of coal — Zastosowanie skalowania wielowymiarowego do klasyfikacji różnych typów węgli / Dariusz JAMRÓZ // Archives of Mining Sciences = Archiwum Górnictwa ; ISSN 0860-7001. — 2014 — vol. 59 no. 2, s. 413–425. — Bibliogr. s. 424–425


Autor


Słowa kluczowe

EN: identification of datastatistical graphics methodsmulti-dimensional data visualizationpattern recognitionmulti-dimensional scalingcoalMDS
PL: statystyczne metody graficzneidentyfikacja danychrozpoznawanie obrazówwizualizacja danych wielowymiarowychMDSwęgielskalowanie wielowymiarowe

Dane bibliometryczne

ID BaDAP83288
Data dodania do BaDAP2014-09-08
Tekst źródłowyURL
DOI10.2478/amsc-2014-0029
Rok publikacji2014
Typ publikacjiartykuł w czasopiśmie
Otwarty dostęptak
Creative Commons
Czasopismo/seriaArchives of Mining Sciences = Archiwum Górnictwa

Streszczenie

Surowce mineralne, które podlegają wzbogacaniu w celu ich lepszego wykorzystania mogą być charakteryzowane wieloma wskaźnikami opisującymi ich, interesujące przeróbkarza, cechy. Podstawowymi cechami są wielkość ziaren oraz ich gęstość, które decydują o przebiegu rozdziału zbiorów ziaren (nadaw) i efektach takiego rozdziału. Rozdział prowadzi się z reguły, w celu uzyskania produktów o zróżnicowanych wartościach średnich wybranej cechy, która zwykle charakteryzowana jest zawartością określonego składnika surowca wyznaczoną na drodze analiz chemicznych. Takie podejście do surowca mineralnego prowadzi do potraktowania go jako wielowymiarowego wektora X = [X1, …, Xn]. Zasadniczym problemem jest także wybór jednostki populacji generalnej (ziarno, jednostka objętości lub masy), co może decydować o określeniu charakteru wielowymiarowych powiązań cech wektora X. Takimi kierunkami charakteryzowania mogą być wielowymiarowe rozkłady wektora losowego X wraz ze wszystkimi konsekwencjami metody (Lyman, 1993; Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba i Surowiak, 2012), wielowymiarowe równania regresji wraz z analizą macierzy współczynników korelacji liniowej oraz korelacji cząstkowej (Niedoba, 2013c), analiza czynnikowa (Tumidajski i Saramak, 2009), czy metody wielowymiarowej wizualizacji danych, będące tematem niniejszego artykułu. Biorąc pod uwagę analizę korelacji pomiędzy badanymi cechami materiałów uziarnionych (węgli) można zidentyfikować jakie jego cechy są ze sobą istotnie powiązane. Jest to swoiste preludium do wytypowania, które cechy węgla powodują istotne różnice pomiędzy jego typami. W artykule poddano badaniu trzy typy węgla, według polskiej klasyfikacji - węgle 31, 34.2 oraz 35, pochodzące z trzech różnych kopalni Górnośląskiego Okręgu Przemysłowego. Można powiedzieć, że z punktu widzenia ich jakości były to węgle energetyczne, semi-koksujące oraz koksujące. Każdy z tych węgli został poddany podziałowi na klasy ziarnowe, przy zastosowaniu odpowiedniego zestawu sit. Następnie każdą z otrzymanych klas ziarnowych rozdzielono w cieczach ciężkich na frakcje densymetryczne. Tak otrzymane klaso-frakcje zostały dodatkowo poddane analizie chemicznej ze względu na szereg cech, tj. ciepło spalania, zawartość siarki, zawartość substancji lotnych, zawartość popiołu, miąższość. Wyniki analiz dla wybranej klasy ziarnowej przedstawiono w tabeli 1. Tym samym otrzymano siedmiowymiarowy zestaw danych, który postanowiono poddać wielowymiarowej wizualizacji za pomocą metody skalowania wielowymiarowego. Metoda skalowania wielowymiarowego (multidimensional scaling, MDS) jest jedną z nowoczesnych metod wizualizacji danych. Tego typu metody są wskazane zwłaszcza w sytuacji gdy ma się do czynienia z zestawem skomplikowanych i złożonych danych. Skalowanie wielowymiarowe jest odwzorowaniem przestrzeni n-wymiarowej w przestrzeń m-wymiarową. Oparte jest na obliczaniu odległości pomiędzy każdą parą n-wymiarowych punktów. Na podstawie tych odległości rozważana metoda ustala wzajemne położenie obrazów tych punktów w docelowej przestrzeni m-wymiarowej. Niech dij oznacza odległość pomiędzy n-wymiarowymi punktami nr i oraz j. Skalowanie wielowymiarowe polega na takim rozmieszczeniu punktów w przestrzeni m-wymiarowej, by odległość Dij liczona w tej przestrzeni pomiędzy odwzorowanymi punktami nr i oraz j była jak najbardziej zbliżona do dij. Rozdział 4 zawiera wyniki eksperymentów. Na rysunkach 1-4 widać, w jaki sposób wzrasta grupowanie punktów reprezentujących trzy różne klasy węgla (31, 34.2 oraz 35) wraz ze wzrostem parametru ITER. Widać, że punkty będące obrazami danych reprezentujących te same klasy węgla zaczynają zajmować osobne podobszary oraz zaczynają się grupować. Czytelność podziału przestrzeni rośnie wraz ze zwiększeniem parametru ITER, więc wraz z dokładniejszym dopasowaniem odległości obrazów punktów Dij w przestrzeni 2-wymiarowej do oryginalnych odległości dij pomiędzy punktami w przestrzeni n-wymiarowej. Na rysunku 4 pokazano najbardziej czytelny wynik, jaki udało się uzyskać dla danych zawierających trzy typy węgla 31, 34.2 oraz 35. Nastąpiło to przy parametrze ITER = 793. Widać wyraźnie, że obrazy punktów danych reprezentujących próbki węgla danego typu gromadzą się w skupiskach. Można zaobserwować, że na prawie całym obszarze rysunku, skupiska te można od siebie odseparować. Jednak w niektórych częściach przestrzeni obrazy punktów reprezentujących różne klasy węgla zachodzą na siebie. Przez to nie możemy na podstawie tego rysunku stwierdzić, że analizowane dane pozwalają na prawidłową klasyfikację typów węgla. Postanowiono więc przeanalizować dane reprezentujące różne typy węgla parami. Na rysunkach 5-7 przedstawiono parami węgle typu, odpowiednio, 34.2 i 35 (Rys. 5), 31 i 34.2 (Rys. 6) oraz 31 i 35 (Rys. 7). Na każdym z tych rysunków widać czytelnie, że obrazy punktów reprezentujących próbki różnych typów węgla gromadzą się w skupiskach, które łatwo można od siebie odseparować. Przeprowadzona wizualizacja wielowymiarowa przy użyciu skalowania wielowymiarowego pozwala więc stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35.

Abstract

Visualization of multidimensional data is a new way of statistical analysis of so-called statistical graphical methods. These methods allow to classify some analyzed objects, including their various features. Facing grained materials problems, like coal or ores many characteristics have an influence on the quality of product. In case of coal, many features must be taken into consideration to determine quality of the material. Apart from most obvious characteristics like particle size, particle density or ash contents there are many others which cause significant differences between considered types of material. In the paper the application of Multidimensional Scaling Method is presented which is one of the multidimensional data visualization techniques. To this purpose, sampling of three types of coal was performed, which were 31, 34.2 and 35 (according to Polish classification of coal types). First, the material was screened on sieves and then divided into density fractions. Next step was to analyze chemically the obtained particle and size fractions of researched coal. Then, the Multidimensional Scaling Method was applied to visualize the investigated set of data. It was proved that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials. However, it was impossible to achieve such identification comparing all three types of coal together. The Multidimensional Scaling Method is new technique of data analysis concerning widely understood mineral processing.

Publikacje, które mogą Cię zainteresować

artykuł
Application of multi-parameter data visualization by means of multidimensional scaling to evaluate possibility of coal gasification — Wykorzystanie wizualizacji wielowymiarowych danych przy użyciu skalowania wielowymiarowego do oceny możliwości zgazowania węgla / Dariusz JAMRÓZ, Tomasz NIEDOBA, Agnieszka SUROWIAK, Tadeusz TUMIDAJSKI, Roman Szostek, Mirosław GAJER // Archives of Mining Sciences = Archiwum Górnictwa ; ISSN 0860-7001. — 2017 — vol. 62 no. 3, s. 445–457. — Bibliogr. s. 455–457
artykuł
Application of relevance maps in multidimensional classification of coal types — Zastosowanie map odniesienia w wielowymiarowej klasyfikacji typów węgla / Tomasz NIEDOBA // Archives of Mining Sciences = Archiwum Górnictwa ; ISSN 0860-7001. — 2015 — vol. 60 no. 1, s. 93–106. — Bibliogr. s. 104–106