Szczegóły publikacji

Opis bibliograficzny

High-performance and programmable attentional graph neural networks with Global tensor formulations / Maciej Besta, Paweł RENC, Robert Gerstenberger, Paolo Sylos Labini, Alexandros Ziogas, Tiancheng Chen, Lukas Gianinazzi, Florian Scheidl, Kalman Szenes, Armon Carigiet, Patrick Iff, Grzegorz Kwasniewski, Raghavendra Kanakagiri, Chio Ge, Sammy Jaeger, Jarosław WĄS, Flavio Vella, Torsten Hoefler // W: SC'23 [Dokument elektroniczny] : proceedings of the international conference for High performance computing, networking, storage and analysis : Denver, CO, USA, November 12–17, 2023. — Wersja do Windows. — Dane tekstowe. — New York : Association for Computing Machinery, 2023. — e-ISBN: 979-8-4007-0109-2. — S. 1–14, [4], art. no. 66. — Wymagania systemowe: Adobe Reader. — Tryb dostępu: https://dl.acm.org/doi/pdf/10.1145/3581784.3607067 [2023-11-15]. — Bibliogr. s. 12–14, Abstr. — Publikacja dostępna online od: 2023-11-11. — P. Renc - dod. afiliacja: Sano Centre for Computational Medicine, Kraków


Autorzy (18)

  • Besta Maciej
  • AGHRenc Paweł
  • Gerstenberger Robert
  • Labini Paolo Sylos
  • Ziogas Alexandros
  • Chen Tiancheng
  • Gianinazzi Lukas
  • Scheidl Florian
  • Szenes Kalman
  • Carigiet Armon
  • Iff Patrick
  • Kwasniewski Grzegorz
  • Kanakagiri Raghavendra
  • Ge Chio
  • Jaeger Sammy
  • AGHWąs Jarosław
  • Vella Flavio
  • Hoefler Torsten

Słowa kluczowe

Graph Neural Networksgraph attention modelssparse dense tensor operations

Dane bibliometryczne

ID BaDAP150154
Data dodania do BaDAP2023-11-16
DOI10.1145/3581784.3607067
Rok publikacji2023
Typ publikacjimateriały konferencyjne (aut.)
Otwarty dostęptak
Creative Commons
WydawcaAssociation for Computing Machinery (ACM)
KonferencjaInternational conference for High performance computing, networking, storage and analysis

Abstract

Graph attention models (A-GNNs), a type of Graph Neural Networks (GNNs), have been shown to be more powerful than simpler convolutional GNNs (C-GNNs). However, A-GNNs are more complex to program and difficult to scale. To address this, we develop a novel mathematical formulation, based on tensors that group all the feature vectors, targeting both training and inference of A-GNNs. The formulation enables straightforward adoption of communication-minimizing routines, it fosters optimizations such as vectorization, and it enables seamless integration with established linear algebra DSLs or libraries such as GraphBLAS. Our implementation uses a data redistribution scheme explicitly developed for sparse-dense tensor operations used heavily in GNNs, and fusing optimizations that further minimize memory usage and communication cost. We ensure theoretical asymptotic reductions in communicated data compared to the established message-passing GNN paradigm. Finally, we provide excellent scalability and speedups of even 4–5x over modern libraries such as Deep Graph Library.

Publikacje, które mogą Cię zainteresować

fragment książki
Cost- and deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds / Maciej MALAWSKI, Gideon Juve, Ewa Deelman, Jarek Nabrzyski // W: SC12 [Dokument elektroniczny] : 2012 International conference for high performance computing, networking, storage and analysis (SC) : November 10–16, 2012, Salt Lake City, Utah. — Wersja do Windows. — Dane tekstowe. — Piscataway : IEEE, cop. 2012. — e-ISBN: 978-1-4673-0806-9. — S. [1–11]. — Wymagania systemowe: Adobe Reader. — Tryb dostępu: http://conferences.computer.org/sc/2012/papers/1000a024.pdf [2013-01-22]. — Bibliogr. s. [11]. — Maciej Malawski — dod. afiliacja: University of Notre Dame
fragment książki
Using unused: non-invasive dynamic FaaS infrastructure with HPC-whisk / Bartłomiej Przybylski, Maciej PAWLIK, Paweł Żuk, Bartłomiej Łagosz, Maciej MALAWSKI, Krzysztof Rzadca // W: SC22 [Dokument elektroniczny] : the international conference for High performance computing, networking, storage and analysis : Dallas, Texas, [USA], November 13–18, 2022 : proceedings. — Wersja do Windows. — Dane tekstowe. — Piscataway : The Institute of Electrical and Electronics Engineers, cop. 2022. — (International Conference for High Performance Computing, Networking, Storage and Analysis ; ISSN 2167-4329). — Dod. Print on Demand ISBN: 978-1-6654-5445-2. — e-ISBN: 978-1-6654-5444-5. — S. [1–15]. — Wymagania systemowe: Adobe Reader. — Bibliogr. s. [12–13], Abstr. — Publikacja dostępna online od: 2023-02-23. — M. Pawlik - dod. afiliacja: AGH University of Science and Technology, Institute of Computer Science; M. Malawski - dod. afiliacja: Sano Centre for Computational Medicine, Krakow