Szczegóły publikacji

Opis bibliograficzny

Wear analysis of 3D-printed spur and herringbone gears used in automated retail kiosks based on computer vision and statistical methods / Jakub BRYŁA, Adam MARTOWICZ, Maciej PETKO, Konrad GAC, Konrad Kobus, Artur Kowalski // Materials [Dokument elektroniczny]. — Czasopismo elektroniczne ; ISSN 1996-1944. — 2023 — vol. 16 iss. 16 art. no. 5554, s. 1-24. — Wymagania systemowe: Adobe Reader. — Bibliogr. s. 22-24, Abstr. — Publikacja dostępna online od: 2023-08-10


Autorzy (6)


Słowa kluczowe

FFFFused Deposition ModelingFDMwearadditive manufacturingMEXFused Filament Fabricationepoxy resin encasematerial extrusiongearscomputer visionstatistical methodsautomated retail kiosk3D printing

Dane bibliometryczne

ID BaDAP148104
Data dodania do BaDAP2023-09-15
Tekst źródłowyURL
DOI10.3390/ma16165554
Rok publikacji2023
Typ publikacjiartykuł w czasopiśmie
Otwarty dostęptak
Creative Commons
Czasopismo/seriaMaterials

Abstract

This paper focuses on a wear evaluation conducted for prototype spur and herringbone gears made from PET-G filament using additive manufacturing. The main objective of this study is to verify if 3D-printed gears can be considered a reliable choice for long-term exploitation in selected mechanical systems, specifically automated retail kiosks. For this reason, two methods were applied, utilizing: (1) vision-based inspection of the gears’ cross-sectional geometry and (2) the statistical characterization of the selected kinematic parameters and torques generated by drives. The former method involves destructive testing and allows for identification of the gears’ operation-induced geometric shape evolution, whereas the latter method focuses on searching for nondestructive kinematic and torque-based indicators, which allow tracking of the wear. The novel contribution presented in this paper is the conceptual and experimental application of the identification of the changes of 3D-printed parts’ geometric properties resulting from wear. The inspected exploited and non-exploited 3D-printed parts underwent encasing in resin and a curing process, followed by cutting in a specific plane to reveal the desired shapes, before finally being subjected to a vision-based geometric characterization. The authors have experimentally demonstrated, in real industrial conditions, on batch production parts, the usefulness of the presented destructive testing technique providing valid indices for wear identification.