Szczegóły publikacji

Opis bibliograficzny

$CO_{2}$ compression and dehydration for transport and geological storage / Paweł Bielka, Szymon KUCZYŃSKI, Stanisław NAGY // Energies [Dokument elektroniczny]. — Czasopismo elektroniczne ; ISSN 1996-1073. — 2023 — vol. 16 iss. 4 art. no. 1804, s. 1–18. — Wymagania systemowe: Adobe Reader. — Bibliogr. s. 16–18, Abstr. — Publikacja dostępna online od: 2023-02-11. — SDEWES 2022 Conference on Sustainable Development of Energy, Water, and Environment Systems


Autorzy (3)


Słowa kluczowe

TEGcarbon capture and storagetriethylene glycolCCSprocess simulationCO2 compression and dehydration

Dane bibliometryczne

ID BaDAP145327
Data dodania do BaDAP2023-02-24
Tekst źródłowyURL
DOI10.3390/en16041804
Rok publikacji2023
Typ publikacjireferat w czasopiśmie
Otwarty dostęptak
Creative Commons
Czasopismo/seriaEnergies

Abstract

Observation of the greenhouse effect prompts the consideration of every possibility of reducing anthropogenic carbon dioxide emissions. One of the key methods that has been the subject of much research is Carbon Dioxide Capture and Storage. The purpose of this study was to investigate the main technologies of CO2 capture, separation, and dehydration as well as methods of its transport and methodology of selecting a suitable geological storage site. An installation of dehydration and compression of carbon dioxide captured after the post-combustion was designed at a temperature of 35 °C, a pressure of 1.51 bar, and a mass flow rate of 2.449 million tons/year, assuming that the geological storage site is located at 30 km from the capture place. For the dehydration process, a multistage compression and cooling system were applied, combined with a triethylene glycol (TEG) dehydration unit. The mass flow rate of TEG was selected as 0.5 kg/s. H2O out of the TEG unit was 26.6 ppm. The amount of energy required to compress the gas was minimized by adopting a maximum post-compression gas temperature of 95 °C for each cycle, thereby reducing plant operating costs. The total power demand was 7047 kW, 15,990 kW, and 24,471 kW, and the total received heat input was 13,880.76 kW, 31,620.07 kW, and 47,035.66 kW for 25%, 60%, and 100% plant load, respectively. The use of more compressors reduces the gas temperature downstream through successive compression stages. It also decreases the total amount of energy required to power the entire plant and the amount of heat that must be collected during the gas stream cooling process. The integration of CO2 compression and cooling system to recover heat and increase the efficiency of power units should be considered.

Publikacje, które mogą Cię zainteresować

artykuł
Optimization wells placement policy for enhanced $CO_{2}$ storage capacity in mature oil reservoirs / Michał KUK, Edyta KUK, Damian JANIGA, Paweł WOJNAROWSKI, Jerzy STOPA // Energies [Dokument elektroniczny]. — Czasopismo elektroniczne ; ISSN 1996-1073. — 2020 — vol. 13 iss. 16 art. no. 4054, s. 1–20. — Wymagania systemowe: Adobe Reader. — Bibliogr. s. 18–20, Abstr. — Publikacja dostępna online od: 2020-08-05
fragment książki
CO2 compression and dehydration for transport and geological storage / P. Bielka, S. KUCZYŃSKI // W: 17th SDEWES conference Paphos 2022 [Dokument elektroniczny] : conference on Sustainable Development of Energy, Water and Environment Systems : November 6-10, 2022, Paphos, Cyprus : book of abstracts / ed. by Marko Ban, [et al.]. — Wersja do Windows. — Dane tekstowe. — Zagreb : Faculty of Mechanical Engineering and Naval Architecture, [2022]. — (Digital Proceedings (Conference on Sustainable Development of Energy, Water and Environment Systems)). — S. 308. — Wymagania systemowe: Adobe Reader. — Tryb dostępu: https://www.sdewes.org/ [2022-12-07]. — Dostęp po zalogowaniu